A Nonhomogeneous Hidden Markov Model for Gene Mapping Based on Next-Generation Sequencing Data
نویسندگان
چکیده
The analysis of polygenetic characteristics for mapping quantitative trait loci (QTL) remains an important challenge. QTL analysis requires two or more strains of organisms that differ substantially in the (poly-)genetic trait of interest, resulting in a heterozygous offspring. The offspring with the trait of interest is selected and subsequently screened for molecular markers such as single-nucleotide polymorphisms (SNPs) with next-generation sequencing. Gene mapping relies on the co-segregation between genes and/or markers. Genes and/or markers that are linked to a QTL influencing the trait will segregate more frequently with this locus. For each identified marker, observed mismatch frequencies between the reads of the offspring and the parental reference strains can be modeled by a multinomial distribution with the probabilities depending on the state of an underlying, unobserved Markov process. The states indicate whether the SNP is located in a (vicinity of a) QTL or not. Consequently, genomic loci associated with the QTL can be discovered by analyzing hidden states along the genome. The aforementioned hidden Markov model assumes that the identified SNPs are equally distributed along the chromosome and does not take the distance between neighboring SNPs into account. The distance between the neighboring SNPs could influence the chance of co-segregation between genes and markers. To address this issue, we propose a nonhomogeneous hidden Markov model with a transition matrix that depends on a set of distance-varying observed covariates. The application of the model is illustrated on the data from a study of ethanol tolerance in yeast.
منابع مشابه
A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model
The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging. Weather radars are capable of detecting and displaying storm-related ...
متن کاملAbnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملGenotype calling from next-generation sequencing data using haplotype information of reads
MOTIVATION Low coverage sequencing provides an economic strategy for whole genome sequencing. When sequencing a set of individuals, genotype calling can be challenging due to low sequencing coverage. Linkage disequilibrium (LD) based refinement of genotyping calling is essential to improve the accuracy. Current LD-based methods use read counts or genotype likelihoods at individual potential pol...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2015